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1 Introduction



2 Importance of Credit Scoring 
for Retail Exposures
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» Credit Risk is associated with a potential event when a counterparty will be unable to 
meet its financial obligations in full → we need to control arising credit risks

» Proper Credit Risk Management covers

– Identification, evaluation and measurement of Credit Risk

– Monitoring, reporting and effective communication 

– Actions and efforts to meet regulatory and underwriting standards

» Existence of an efficient set of Credit Risk models is a must in the current global 
situation

» Credit Scoring model is a essential piece of such modelling set  

Why do we care about measuring Credit Risk?
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Risk modelling to drive the business model of a bank

A Holistic Modelling Approach

IFRS9 & Stress 
Testing 
Provisioning/IFRS9, 
Forecasting, Scenario 
Analysis/Stress Testing

Business & 
Strategic 
Planning

IRB
PD, LGD, EAD

Decisioning
Scorecards and 
Rating Models

ICAAP, Risk 
Appetite & 
Credit Portfolio 
Management 
Correlations, 
Concentration, CVaR, 
RAROC, & Operational 
Risk



3 Credit Scoring: Setting and 
Challenges
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» Scorecard models are built to rank order borrowers in terms of their default risk. 

» It does not identify “good” or “bad” applications on an individual basis. It provides statistical odds, or 
probability, that an applicant with any given score will be “good” or “bad”.

» Scorecards are developed using the assumption that “future performance will reflect past 
performance.” Based on this, the performance of previously opened accounts is analyzed in order to 
predict the performance of future accounts.

Scorecard Introduction

Application Scorecard

Behavior Scorecard

Collection Scorecard
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Data is a key but alternatives are present

Scorecard Types

Approach based exclusively on 

expert surveys

Requires: Extensive surveys on 

expected default patterns

Judgmental

Approach based on historical (3-

5 years) data for Retail 

exposures.

Requires: High-quality data on 

defaulted and performing 

facilities including customer and 

loan-level characteristics

Data-based

Approach based both on 

historical (3-5 years) data and 

expert surveys

Requires: Part of data on 

defaulted and performing 

facilities; Expert surveys on 

expected default patterns

Hybrid
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Six Steps Approach

Scorecard Model Build Methodology

One Two Three Four

Sample Building. To 

ensure that the data 

used mirrors the Bank’s 

experience and 

business.

Binning. To discretize 

each variable’s 

information. This 

ensures simplicity to 

the tool.

Variable Selection. To 

consider the most 

significant variables as 

potential predictors.

Model Build. To select 

the most important 

predictors and assign 

them the correct weight 

in predicting the default 

event. 

Five

Model Validation. To 

validate the efficacy of 

the model on 

independent samples.

Six

Model Performance.

To assess the capacity 

of the model in 

discriminating good and 

bad accounts.
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Scorecard Key Components

Target Variable Observation Window Scorecard Characteristics

The target variable is the default 

flag. The flag is defined internally 

in each institution. 

» Days past due 

» Unlikeliness to pay 

– Forbearance 

– Litigation

– Deceased

– Bankruptcy

Gather data for accounts opened during 

a specific time frame, and monitor their 

performance for time window to 

determine if they were good or bad.

TimeReference Month

New Account Good/Bad?

Observation Window

Relevant credit and loan 

characteristics should be included 

to be selected as predictors.

Internal data

» Performance

» Product 

» Loan / Customer characteristics

» Internal scores

External data 

» Bureau or partner data

» Other sources
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Scorecard Sample Building
Step 1

» Development and holdout samples should cover

– The longest possible time frame in terms of observation dates

– The same time-frame

» Development sample should contain more records than the holdout

» Typically: 60/40, 70/30, 80/20 split depending on the sample size. It 

is important that the holdout contain enough goods/ bads

» Where sample sizes are small, the scorecard can be developed 

using 100% of the sample and validated using several randomly 

selected samples of 50% to 80% each

» Out-of-time sample contains observations completely separated in 

time from the development/holdout sample; typically 6-12 months

» Typically about 2,000 each of goods, bads, and rejects are 

sufficient for scorecard development. 

» Distribution of goods and bads should not be statistically different in 

development and validation samples (Kolmogorov-Smirnov test can 

be used for this purpose).

Development 

Sample

Hold-out Sample

Out-of-

time

Sample

T T+mT-k
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Step 2

Variable Selection

1

4

2

3

Univariate Analysis
Regress each driver against the target variable. IV and GINI 

to track which are the most powerful drivers. 

Correlation Matrices
For categorical variables, it helps to reduce the 

number of redundant variables. 

Clustering Algorithms
Based on correlation techniques, they detect 

groups of variables that share similar 

behavior. The variable with  higher predictive 

power is eligible to be representative of the 

whole group.

Expert Judgment
Fundamental to prioritize variables that have greater relevance 

from a business perspective. This can overtake the predictive 

power  based on a standalone statistical basis.

Variables 

Selection
Methodologies
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Binning Approaches

Experience-Based

Based on experience and 

industry knowledge

May be subjective and difficult 

to defend

Statistically-Based

Using statistical techniques to 

define unique bins

More objective and rigorous

Step 3
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» The most popular model estimation techniques are:

– Logistic regression

› Straightforward and sufficiently robust.

› Algorithms to control for tolerance, stepwise entrance of the drivers

› Results between 0 and 1.

– Decision Tree algorithms

› Finds the best split between variables to maximize discrimination

› Not easy to control in the split/weight they provide

– Machine learning algorithms

Step 4

Model Building
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The effectiveness of the scorecard can be verified under 
the following risk-metrics:

» Gini Coefficient: ability to measure the rank-order capability (i.e. 
distinguishing good/bad accounts).

Benchmark values:  40-60% (Application scorecard), 70-80% (Behavioural 
Scorecard)

» AUROC: ability to measure accuracy of classification.

Benchmark values:  50% (Random guess), 100% (perfect correct 
predictions)

Both these metrics are recommended by the Basel 
Committee  (Working paper n.14- Studies on the 
Validation of Internal Rating System)

Step 5

Model Performance
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Model Validation
Step 6

The model is built on the development sample. It is therefore important to test on independent samples its 
effectiveness, using the same risk-metrics describes previously.

Out-of-Sample validation
» Testing the model on the holdout sample. Same time-frame but independent observations.

Out-of-Time validation
» Testing the model on the out-of-time sample. This sample is taken from a different time-frame.
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Case Study
Sample Binning: UK Behavioral Scorecard Model
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ACCOUNT-1 - GOOD ACCOUNT

Payment Type Linear Installments

Balance-to-Income 0.2

CCJ No

Bureau Credit Score Excellent

Employment Status Full Time Employed

Relative Loan Age 70%

Months in Arrears Current

Occupancy Type Second Home

Updated LTV 8%

PD 0.15%

Score 970.25

ACCOUNT-2 - BAD ACCOUNT

Payment Type Increasing Installments

Balance-to-Income > 2.5

CCJ Yes

Bureau Credit Score Fair

Employment Status Employed w/ Partial Support

Relative Loan Age 4%

Months in Arrears Current

Occupancy Type Owner Occupied

Updated LTV 75%

PD 51.05%

Score 496.96

Case Study: UK Behavioral Scorecard Model
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Case study: SME Scorecard build based on size 
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Case study: Scorecard Building with limited information
Hybrid Approach

Step 1. We estimate an 

empirical model on the limited 

data available and ask the 

Bank to provide the ranking 

and importance of other 

variables for the modelled risk 

metrics.

Step 2. Based on the rank 

ordering of the variables, 

build-back the coefficient 

estimates for the variables 

from the expert questionnaire.

Step 3. Calibrate the model to 

coefficients to match the 

default rate in the data.

» Quite often, full data are not 

available and the standard 

modelling approach might 

provide rather limited information 

for a proper scorecard. 

» To deal with such cases, the 

missing information can be 

supplemented by expert 

knowledge.

» We overlap information to 

integrate qualitative data into the 

empirical model.



4 Implications and Applications
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» Implementation should be driven by model, data and environment

– Data: what is collected currently? What will be collected in future?

– Environment: who will be providing data and running model? How frequent? Does it 
involve Cloud solution?

– Purpose: what is the model use? How results of the run will be used? Will the model 
be linked to other models in placed? What is post analysis? 

– Model: how complicated the model is? 

» Monitoring should act as regular review of model output and performance 

– Is it accurate? Is it performing well? How stable are the results?

Challenges and nuances
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» Example of GUI which designed to be 
located on local Bank’s server

» PD and Score are calculated based on 
provided inputs

» Other tabs can present joint portfolio 
analysis or batch run (scoring whole 
portfolio at once)

Implementation
Graphical User Interface
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Implementation and Use
Model use strategy to support faster decision making and limit setting
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Discrimination Accuracy Stability

Model ability/power to 

discriminate between events 

and non-events, e.g., defaults 

and performers, and the power 

to rank-order risk. Applicable to 

choice models with binary 

outcome (e.g., PD or scorecard 

models).

Model ability to deliver accurate 

best estimate/prediction of output. 

Applicable to virtually all models 

with quantifiable output and an 

observable real-world counterpart.

Comparison of distributional 

aspects of development sample, 

on the one hand, with those of any 

other sample, usually production. 

» Gini/ROC

– K-S Statistic

» Brier Score

» Deviation of Actual from Predicted

» HL/Chi-square test

» Population Stability 

» Characteristic Stability

An established approach to monitoring model performance 

Monitoring Model Performance
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